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Huygens, Holland, and Hanging
Chains, or L’affaire de la chaîne

John F. Bukowski1

I need to begin with a disclaimer and an apology. The 
advertisement for this lecture began with the words, “At the

age of 17, Dutch mathematician Christiaan Huygens proved a
theory of Galileo to be wrong....” This is not exactly correct, as it
was more of an aside or an afterthought of Galileo that Huygens
proved to be wrong. In his Discorsi of 1638, Galileo was writing
about strength of materials and cross-sections of beams, when the
curve known as the parabola kept appearing. After correctly
explaining how to draw such a curve, he stated, “The other method
of drawing the desired curve ... is the following: Drive two nails into
a wall at a convenient height and at the same level.... Over these two
nails hang a light chain.... This chain will assume the form of a
parabola.”2 An example of a parabola is shown in Figure 1. The
equation of the simplest parabola is y = x2, and the general equation
of such a curve may be given by y = ax2 + x + c. We could also discuss
the parabola in more geometric terms, referring to the focus and the
directrix, but we won’t do that here. The shape of this curve is what
is important to us.
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Figure 1. The parabola y = x2

If we follow Galileo’s instructions and hang such a chain, either
over two nails or with two hooks attached to suction cups, it
certainly looks like it could be a parabola. In fact, Galileo was
merely stating what was commonly thought about the problem of
the hanging chain. It was widely accepted in the early seventeenth
century that a hanging chain did take the form of a parabola. The
problem is thought to have first appeared about a century earlier,
when Leonardo da Vinci sketched a few hanging chains in his
notebooks.3 Other prominent seventeenth-century mathematicians
also considered this problem. In 1614, the Flemish mathematician
Isaac Beeckman (1588-1637) wrote in his notebook, “Let there
hang from a beam a cord. . .attached at the ends so that it hangs
loosely and freely,”4 while including an accompanying sketch.
Beeckman also asked his friend René Descartes (1596-1650) about
it. In the writings of Descartes, there is a note, “Sent to me by
[Beeckman] whether a cord. . .affixed by nails. . .may describe part
of a conic section [or a parabola].”5 There is no indication that
Descartes attempted to solve the problem or even that he discussed
it further with Beeckman.

The problem of the hanging chain also appeared in the works of
the famous Dutch mathematician Simon Stevin (1548-1620).
Stevin’s Les Oeuvres Mathématiques was published posthumously in
1634, with annotations by the French mathematician Albert Girard
(1595-1632). It is believed that Christiaan Huygens may have
learned of the problem here, since the works of Stevin were
recommended to him in 1645 by Stampioen de Jonge,6 hired by
Huygens’s father Constantijn to provide mathematical instruction
for his two oldest sons. Near the end of Stevin’s Oeuvres, Girard
wrote, “because the other slack or taut ropes are parabolic lines (as
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I have in the past proven around the year 1617), as I will prove after
this at the end of the following corollary, that which will be strongly
appropriate for the ornamentation of these Spartostatique.”7 It
appears that there was no proof from the year 1617, however, as
Girard continues after Stevin’s corollary, “To satisfy my last promise
which precedes the last corollary, and not having the spare time
however to place here a copy of my entire proof, I will give it
another time in public, with my other works, in return for the help
of God, when the research of the sciences will be very
commendable, which it is not at present.. . . Fin de la
Spartostatique.”8 So the work ends without an appearance of a proof
from Girard, who was also dead at the time of the publication of
Stevin’s Oeuvres.

Now we meet our main characters, Christiaan Huygens (1629-
1695) and Marin Mersenne (1588-1648). Christiaan Huygens was
the second son of Constantijn Huygens in an important Dutch
family. Constantijn was well-known in Holland as a composer and
a poet. He worked in the service of the government, was somewhat
wealthy, and had important friends. Father Marin Mersenne was a
French monk in the order of the Minims. He was a scientist and a
correspondent to many other scientists and intellectuals throughout
Europe. In fact, after Mersenne’s death, letters from more than
seventy such thinkers were found in his Paris cell. One of
Mersenne’s correspondents was Constantijn Huygens.

The importance of the Huygens family is evident throughout
Holland. There is a painting of Constantijn Huygens and his wife
(Christiaan’s mother) Susanna van Baerle, by J. van Campen, in the
Mauritshuis in The Hague. Also in this small yet wonderful
museum is the famous portrait of Constantijn Huygens and his five
children, by A. Hanneman. This painting appears in nearly every
book about Christiaan Huygens. Turning to street names, there is
the Eerste Constantijn Huygensstraat in Amsterdam. (Eerste means
“first,” indicating that the street is named for the first Constantijn
Huygens, Christiaan’s father, as opposed to the second Constantijn
Huygens, Christiaan’s brother.) Of course, there is also the Rue
Huyghens in the 14th arrondissement of Paris, where I made a
pilgrimage during my six-hour visit there last summer. Of course,
this street is most likely named for Christiaan himself, as the city of
Paris is filled with streets named for scientists, writers, and



88 Juniata Voices

musicians.
The focus of my work on the history of the problem of the

hanging chain is a series of letters between Christiaan Huygens and
Marin Mersenne, beginning in 1646 and ending in 1648 with
Mersenne’s death. As mentioned earlier, Constantijn Huygens was a
correspondent of Mersenne, and he was proud to tell Mersenne
about his brilliant seventeen-year-old son Christiaan. It was
Mersenne who initiated the correspondence with Christiaan in a
letter dated October 13, 1646. The letter dealt with a different
mathematical topic, about which Mersenne wrote, “As I greatly
respect your father, whom I believe is pleased to speak of your
propositions of which you say to have a proof, I will say only of the
last one, that I do not believe that you have a proof, as I have not
seen one....”9 Two weeks later, on October 28th, Christiaan
responded to Mersenne’s initial letter with a full explanation of the
other problem, finishing his letter with the additional promise, “I
will send you in another letter a proof that a hanging cord or chain
does not make a parabola, and what should be the pressure on the
mathematical cord or one without gravity to make one; I have found
such a proof not long ago.”10

We note here that Huygens was in fact correct in saying that the
hanging chain does not make a parabola. We call the curve formed
by such a chain a “catenary,” a term originally coined by Huygens
himself in a 1690 letter to Gottfried Leibniz. It is interesting to note
that our word “catenary” is derived from the Latin catena, meaning
“chain.” So we say that the shape of a hanging chain is. . .a chain!

After receiving another letter in which Mersenne expressed
great interest in seeing Christiaan’s discussion of the hanging chain,
Huygens then sent him the requested proof in November 1646. He
began with four assumptions (or “axiomata”), two of which are the
following:11

Assumption 1. I suppose therefore first that the whole cord
depends only on some gravity, tending toward the center of
the earth, to be parallel to one another.
Assumption 2. Secondly, that two or more weights. . .pull on
the cord. . .which is held at [two endpoints].

Huygens then begins to set up his argument with the following
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proposition and the corresponding Figure 2.

Proposition 5.12 If there are so many weights that one wants
S, R, P, Q hanging from a cord ABCD, I say that MD and BC
continued intersect at L on the hanging diameter of the
weights P and Q. AB and DC [intersect] at K on the hanging
diameter of the weights R and P, and in this way 
the rest....

Figure 2.13 Huygens’s sketch to accompany Proposition 5

In Proposition 5, Huygens sets up a weightless chain with
individual weights hanging from it. He discusses the form taken by
the chain, explaining how the extensions of certain segments in
Figure 2 intersect on the “hanging diameter of the weights” between
them. (I want to point out that this phrase, “hanging diameter of the
weights,” is awkward in French, awkward in Latin, and therefore
also awkward in English!) What this means is that these extensions
intersect at a point on the vertical line that is halfway between the
two weights and therefore also bisects the segment on the chain
above. In Proposition 6, Huygens removes the hanging weights and
instead considers weighted line segments making up the chain. He
argues in a similar fashion that the chain hangs exactly the same
way as in Proposition 5. These propositions are based on an earlier
result known simply as Stevin’s Theorem.

At this point, Huygens is nearly ready to state the heart of the
proof. Before we examine this next proposition, we turn to a
statement made by Descartes in a letter to Princess Elizabeth, “In
the solution of a geometrical problem . . . I use no theorems except
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those which assert that the sides of similar triangles are proportional,
and that in a right triangle the square of the hypotenuse is equal to
the sum of the squares of the sides.”14 Huygens had a solid
knowledge of geometry and knew the works of Descartes, so it is
not surprising that the upcoming argument put forth by Huygens
uses similar triangles as an integral part of the proof. We define two
triangles to be similar if their corresponding angles are equal, as for
the triangles in Figure 3. We then see in Figure 4 that two parallel
lines drawn across an angle will create two similar triangles. This is
how Huygens incorporates similar triangles into his Proposition 8.

Figure 3. Similar triangles

Figure 4. A simple case of similar triangles

Proposition 8.15 Let the hanging chain HGABCDK consist of
lines of equal length, weight, and shape; I say the points of
connection GABCDK cannot coincide on the same 
parabolic line.

Figure 5.16 Huygens’s sketch to accompany Proposition 8.
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Huygens begins his proof17 of Proposition 8 in the following way: 

From Proposition 6 it is evident in what manner these lines
may be bound to hang truly, so that H may be in the middle
of BC, P in the middle of CD, etc. And so now the parabola
RABCF having been described, passing through three points
A, B, C, I say that this is not to pass through the point D and
the rest.... 

Here, Huygens sets up a hanging chain of equal segments and the
parabola RABCF in the same diagram, as shown in Figure 5. He uses
the information from Propositions 5 and 6 to say that the extensions
of the line segments intersect on the hanging diameters of the
weights, and he claims that the parabola intersects the chain only at
the points A, B, C, and nowhere else. (It is worth noting here that
one can always fit a parabola to any three points. He fits the
parabola to A, B, C, and he hopes to show that it does not pass
through the other points H, G, D, K, on the chain.) If Huygens can
go on to prove this claim, he will have shown that the chain and the
parabola are indeed different shapes. He continues with the
following:

for ECD may be extended until it may be that — = — , and 

then AF may be drawn, and this therefore will be parallel to
BC and similarly will be divided in two by the line EL at L,
therefore the point F will be on the same parabola with the
points A, B, C, for EL is a diameter of the parabola B, and
not the point D.

Huygens is now referring to the definition of diameter put forth by
Apollonius in the third century B.C., that a diameter is a line that
bisects any set of parallel segments across a parabola. The diameter
is always parallel to the axis of the parabola, the line down the
“middle” of the parabola. Huygens sets up his first set of similar
triangles, ssFEA and ssCEB, and he equates the ratios of
corresponding sides, which is how one takes advantage of the
presence of similar triangles. He claims that the point F is on the
given parabola, but that the point D is not. He explains why D is not
on the parabola in the final sentence of the proof of Proposition 8:

FC      AB
CE      BE
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For otherwise the line ECDF might have been obliged to cut
the parabola in three points, which is absurd, or the point D
to coincide with the point F, which is impossible, for FC >
AB or DC, since CE > BE. 

No matter how hard we try to draw a line that intersects a parabola
in three points, it is impossible, so this is not an option. The other
option is that D and F are really the same point; then the line would
only intersect the parabola in two points. But Huygens uses the
equation above, — = — to show that this is not possible. From the 

picture, we see immediately that CE > BE. Using this information in
the equation, we get that FC > AB. But AB = DC, since all segments
of the chain are equal in length. Therefore, Huygens shows that FC
> DC, meaning that F and D are distinct points. With this, Huygens
proves that D is not on the parabola. Proposition 8 continues with
similar arguments to show that the other points of the chain are not
on the parabola either. In this way, Huygens shows that the chain
does not hang in the form of a parabola.

Huygens’s work on this problem does not end here. His
Proposition 9 essentially restates the result of Proposition 8 that “no
chain hangs according to a parabolic line.”18 Next, Proposition 10 is
a very intriguing statement, in which he says that there is “no
notable difference between the line which hangs, and that which
may hang if it were composed of equal lines....”19 Here he is
comparing the (smooth) hanging cord and the chain composed of
connected straight segments, saying that the smooth cord should
also not hang as a parabola. Of course this is a correct statement, but
Huygens offers no proof of this in his letter.

In Proposition 11, Huygens explains how to make the chain
into a parabola, as he promised in his first letter to Mersenne. He
proposes to hang equal weights from a weightless string at equal
intervals along the horizontal (as opposed to equal intervals along
the string itself). In this case, the string does in fact take the form of
a parabola. Clearly excited by this, Huygens goes on to propose
another way to make a parabola: “Hence it is clear that if on the
string. . .might be placed little beams or parallelepipeds (that is,
rectangles) of equal weight, size, and shape, the points. . .press on
the string, each one to be on the same parabola....”20 Of course, he
does not prove this statement, but the sketch he provides looks

FC      AB
CE      BE
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reasonable enough. Twenty-two years later, however, in the margin
of another version of this same argument, Huygens writes, “non
sequitur neque est verum”21 —“it does not follow, nor is it true.” Here
in 1668, Huygens realizes his error in this final statement from his
youthful correspondence. In fact, if one stacks rectangles inside a
hanging cord, an arc of a circle will result. In the case of the weights
hanging from the string (as in Proposition 11), the cord is pulled
downward, whereas here the rectangles push the cord outward in a
normal direction (certainly not downward!), causing the two
situations to produce different shapes.

After Huygens’s letters to Mersenne in 1646, the problem of the
hanging chain was not studied for many years. The next known
attempt to understand the problem was by the Jesuit Father Ignace
Gaston Pardies (1636-1673), who considered the problem in La
Statique, ou la Science des Forces Mouvantes,22 published in 1673. In
this work, Pardies also proves that the hanging chain does not take
the shape of a parabola. In contrast to the awkward geometrical
arguments of Huygens, the proof by Pardies is much more elegant.

You should have noticed that although Huygens and Pardies
were able to show that the hanging chain is not a parabola, they
were not able to say what shape the hanging chain actually is. More
years passed before Jacob Bernoulli posed the problem in Acta
Eruditorum23 in May 1690, challenging readers to come up with the
solution of the actual shape of the hanging chain. The Acta was a
very interesting journal, created and edited by Leibniz, containing
articles on mathematics, biology, religion, and philosophy, among
other topics. Many of the interesting mathematical problems of the
time appeared in the Acta. Just over one year later, in the June 1691
Acta, four solutions to the problem of the hanging chain appeared—
those of Leibniz, Johann Bernoulli, Jacob Bernoulli, and Christiaan
Huygens! These papers were not the focus of my recent study,
although I hope to read them in the future. One of the things I find
most interesting about Christiaan Huygens and the hanging chain is
that he worked on this problem at the beginning of his
(mathematical) life in 1646 and again near the end of his life,
separated by forty-five years and using two completely different
approaches.

For those of you who are mathematically inclined, we know
today that the shape of the hanging chain, the “catenary,” is a
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hyperbolic cosine, a combination of exponential functions.
Although this is well-known among mathematicians now, it took
the 17-year-old Christiaan Huygens to first show that the curve was
not a parabola, setting the stage for some of the biggest names in
late seventeenth-century mathematics to determine the true shape
of the curve.

a
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